Content a Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamic Systems
Skip Nav Destination
Research Papers
An Extended Continuation Problem for Bifurcation Analysis in the Presence of Constraints
Harry Dankowicz,
Department of Mechanical Science and Engineering,
University of Illinois at Urbana-Champaign
, Urbana, IL 61801
danko@illinois.edu
Search for other works by this author on:
Frank Schilder
Department of Mathematics,
Technical University of Denmark
, 2800 Kongens Lyngby, Denmark
f.schilder@mat.dtu.dk
Search for other works by this author on:
Harry Dankowicz
Department of Mechanical Science and Engineering,
University of Illinois at Urbana-Champaign
, Urbana, IL 61801
danko@illinois.edu
Frank Schilder
Department of Mathematics,
Technical University of Denmark
, 2800 Kongens Lyngby, Denmark
f.schilder@mat.dtu.dk
J. Comput. Nonlinear Dynam. Jul 2011, 6(3): 031003 (8 pages)
Published Online: December 15, 2010
This paper presents an extended formulation of the basic continuation problem for implicitly defined, embedded manifolds in . The formulation is chosen so as to allow for the arbitrary imposition of additional constraints during continuation and the restriction to selective parametrizations of the corresponding higher-codimension solution manifolds. In particular, the formalism is demonstrated to clearly separate between the essential functionality required of core routines in application-oriented continuation packages, on the one hand, and the functionality provided by auxiliary toolboxes that encode classes of continuation problems and user definitions that narrowly focus on a particular problem implementation, on the other hand. Several examples are chosen to illustrate the formalism and its implementation in the recently developed continuation core package COCO and auxiliary toolboxes, including the continuation of families of periodic orbits in a hybrid dynamical system with impacts and friction as well as the detection and constrained continuation of selected degeneracies characteristic of such systems, such as grazing and switching-sliding bifurcations.
1.
Keller H. B.
Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems
,"
Applications of Bifurcation Theory
,
Academic Press
,
New York
, pp.
359
–
384
.
2.
Menzel R. Schwetlick H.
Zur Lösung Parameterabhängiger Nichtlinearer Gleichungen mit Singulären Jacobi-Matrizen
,"
Numer. Math.
0029-599X,
30
(
1
), pp.
65
–
79
.
3.
Henderson M. E.
Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds
,"
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
12
(
3
), pp.
451
–
476
.
4.
Krauskopf B. Riess Th.
A Lin's Method Approach to Finding and Continuing Heteroclinic Connections Involving Periodic Orbits
,"
Nonlinearity
0951-7715,
21
(
8
), pp.
1655
–
1690
.
5.
Schilder F. Peckham B. B.
Computing Arnol'd Tongue Scenarios
,"
J. Comput. Phys.
0021-9991,
220
(
2
), pp.
932
–
951
.
6.
Wulff C. Schilder F.
Numerical Bifurcation of Hamiltonian Relative Periodic Orbits
,"
SIAM J. Appl. Dyn. Syst.
1536-0040,
8
(
3
), pp.
931
–
966
.
7.
Doedel E. Champneys A. Fairgrieve T. Kuznetsov Y. Sandstede B. Wang X.
AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)
," Concordia University Technical Report.
8.
Champneys A. R. Kuznetsov Y. A. Sandstede B.
A Numerical Toolbox for Homoclinic Bifurcation Analysis
,"
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
6
(
5
), pp.
867
–
887
.
9.
Dercole F. Kuznetsov Y. A.
Slidecont: An Auto97 Driver for Bifurcation Analysis of Filippov Systems
,"
ACM Trans. Math. Softw.
0098-3500,
31
(
1
), pp.
95
–
119
.
10.
Thota P. Dankowicz H.
TC-Hat (TCˆ): A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems
,"
SIAM J. Appl. Dyn. Syst.
1536-0040,
7
(
4
), pp.
1283
–
1322
.
11.
Kuznetsov Y. A. Levitin V. V.
CONTENT: A Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamical Systems
." Centrum voor Wiskunde en Informatica, Technical Report.
12.
Govaerts W. Kuznetsov Y. A. Dhooge A.
Numerical Continuation of Bifurcations of Limit Cycles in MATLAB
,"
SIAM J. Sci. Comput.
1064-8275,
27
(
1
), pp.
231
–
252
.
13.
Dhooge A. Govaerts W. Kuznetsov Y. A.
MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs
,"
ACM Trans. Math. Softw.
0098-3500,
29
(
2
), pp.
141
–
164
.
14.
Wulff C. Schebesch A.
Numerical Continuation of Symmetric Periodic Orbits
,"
SIAM J. Appl. Dyn. Syst.
1536-0040,
5
(
3
), pp.
435
–
475
.
15.
Engelborghs K. Luzyanina T. Roose D.
Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL
,"
ACM Trans. Math. Softw.
0098-3500,
28
(
1
), pp.
1
–
21
.
16.
Szalai R. Stepan G. Hogan S. J.
Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices
,"
SIAM J. Sci. Comput.
1064-8275,
28
(
4
), pp.
1301
–
1317
.
17.
Salinger A. G. Burroughs E. A. Pawlowski R. P. Phipps E. T. Romero L. A.
Bifurcation Tracking Algorithms and Software for Large Scale Applications
,"
Int. J. Bifurcation Chaos Appl. Sci. Eng.
0218-1274,
15
(
3
), pp.
1015
–
1032
.
19.
Kuznetsov Y. A.
Elements of Applied Bifurcation Theory
, 3rd ed., Section 10.2.2,
Springer-Verlag
,
New York
.
20.
Higham D. J. Higham N. J.
MATLAB Guide
, 2nd ed.,
Society for Industrial and Applied Mathematics
,
Philadelphia, PA
, Chap. 5.
21.
Svahn F. Dankowicz H.
Energy Transfer in Vibratory Systems With Friction Exhibiting Low-Velocity Collisions
,"
J. Vib. Control
1077-5463,
14
(
1–2
), pp.
255
–
284
.
22.
Kang W. Thota P. Wilcox B. Dankowicz H.
Bifurcation Analysis of a Microactuator Using a New Toolbox for Continuation of Hybrid System Trajectories
,"
ASME J. Comput. Nonlinear Dyn.
1555-1423,
4
(
1
), p.
011009
(8 pp.).
23.
di Bernardo M. Kowalczyk P. Nordmark A.
Bifurcations of Dynamical Systems With Sliding: Derivation of Normal-Form Mappings
,"
Physica D
0167-2789,
170
, pp.
175
–
205
.
24.
Haro A. de la Llave R.
A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Rigorous Results
,"
J. Differ. Equations
0022-0396,
228
(
2
), pp.
530
–
579
.
25.
Haro A. de la Llave R.
A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Numerical Algorithms
,"
Discrete Contin. Dyn. Syst., Ser. B
1531-3492,
6
(
6
), pp.
1261
–
1300
.
26.
Haro A. de la Llave R.
A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity
,"
SIAM J. Appl. Dyn. Syst.
1536-0040,
6
(
1
), pp.
142
–
207
.
27.
Moore G.
Floquet Theory as a Computational Tool
,"
SIAM J. Numer. Anal.
0036-1429,
42
(
6
), pp.
2522
–
2568
.
Copyright © 2011
by American Society of Mechanical Engineers
You do not currently have access to this content.
Sign In
Purchase this Content
Source: https://asmedigitalcollection.asme.org/computationalnonlinear/article/6/3/031003/384947/An-Extended-Continuation-Problem-for-Bifurcation
0 Response to "Content a Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamic Systems"
Post a Comment