This paper presents an extended formulation of the basic continuation problem for implicitly defined, embedded manifolds in R n . The formulation is chosen so as to allow for the arbitrary imposition of additional constraints during continuation and the restriction to selective parametrizations of the corresponding higher-codimension solution manifolds. In particular, the formalism is demonstrated to clearly separate between the essential functionality required of core routines in application-oriented continuation packages, on the one hand, and the functionality provided by auxiliary toolboxes that encode classes of continuation problems and user definitions that narrowly focus on a particular problem implementation, on the other hand. Several examples are chosen to illustrate the formalism and its implementation in the recently developed continuation core package COCO and auxiliary toolboxes, including the continuation of families of periodic orbits in a hybrid dynamical system with impacts and friction as well as the detection and constrained continuation of selected degeneracies characteristic of such systems, such as grazing and switching-sliding bifurcations.

1.

Keller

,

H. B.

, 1977, "

Numerical Solution of Bifurcation and Nonlinear Eigenvalue Problems

,"

Applications of Bifurcation Theory

,

Academic Press

,

New York

, pp.

359

384

.

2.

Menzel

,

R.

, and

Schwetlick

,

H.

, 1978, "

Zur Lösung Parameterabhängiger Nichtlinearer Gleichungen mit Singulären Jacobi-Matrizen

,"

Numer. Math.

0029-599X,

30

(

1

), pp.

65

79

.

3.

Henderson

,

M. E.

, 2002, "

Multiple Parameter Continuation: Computing Implicitly Defined k-Manifolds

,"

Int. J. Bifurcation Chaos Appl. Sci. Eng.

0218-1274,

12

(

3

), pp.

451

476

.

4.

Krauskopf

,

B.

, and

Riess

,

Th.

, 2008, "

A Lin's Method Approach to Finding and Continuing Heteroclinic Connections Involving Periodic Orbits

,"

Nonlinearity

0951-7715,

21

(

8

), pp.

1655

1690

.

5.

Schilder

,

F.

, and

Peckham

,

B. B.

, 2007, "

Computing Arnol'd Tongue Scenarios

,"

J. Comput. Phys.

0021-9991,

220

(

2

), pp.

932

951

.

6.

Wulff

,

C.

, and

Schilder

,

F.

, 2009, "

Numerical Bifurcation of Hamiltonian Relative Periodic Orbits

,"

SIAM J. Appl. Dyn. Syst.

1536-0040,

8

(

3

), pp.

931

966

.

7.

Doedel

,

E.

,

Champneys

,

A.

,

Fairgrieve

,

T.

,

Kuznetsov

,

Y.

,

Sandstede

,

B.

, and

Wang

,

X.

, 1997, "

AUTO97: Continuation and Bifurcation Software for Ordinary Differential Equations (With HomCont)

," Concordia University Technical Report.

8.

Champneys

,

A. R.

,

Kuznetsov

,

Y. A.

, and

Sandstede

,

B.

, 1996, "

A Numerical Toolbox for Homoclinic Bifurcation Analysis

,"

Int. J. Bifurcation Chaos Appl. Sci. Eng.

0218-1274,

6

(

5

), pp.

867

887

.

9.

Dercole

,

F.

, and

Kuznetsov

,

Y. A.

, 2005, "

Slidecont: An Auto97 Driver for Bifurcation Analysis of Filippov Systems

,"

ACM Trans. Math. Softw.

0098-3500,

31

(

1

), pp.

95

119

.

10.

Thota

,

P.

, and

Dankowicz

,

H.

, 2008, "

TC-Hat (TCˆ): A Novel Toolbox for the Continuation of Periodic Trajectories in Hybrid Dynamical Systems

,"

SIAM J. Appl. Dyn. Syst.

1536-0040,

7

(

4

), pp.

1283

1322

.

11.

Kuznetsov

,

Y. A.

, and

Levitin

,

V. V.

, 1997, "

CONTENT: A Multiplatform Environment for Continuation and Bifurcation Analysis of Dynamical Systems

." Centrum voor Wiskunde en Informatica, Technical Report.

12.

Govaerts

,

W.

,

Kuznetsov

,

Y. A.

, and

Dhooge

,

A.

, 2005, "

Numerical Continuation of Bifurcations of Limit Cycles in MATLAB

,"

SIAM J. Sci. Comput.

1064-8275,

27

(

1

), pp.

231

252

.

13.

Dhooge

,

A.

,

Govaerts

,

W.

, and

Kuznetsov

,

Y. A.

, 2003, "

MATCONT: A MATLAB Package for Numerical Bifurcation Analysis of ODEs

,"

ACM Trans. Math. Softw.

0098-3500,

29

(

2

), pp.

141

164

.

14.

Wulff

,

C.

, and

Schebesch

,

A.

, 2006, "

Numerical Continuation of Symmetric Periodic Orbits

,"

SIAM J. Appl. Dyn. Syst.

1536-0040,

5

(

3

), pp.

435

475

.

15.

Engelborghs

,

K.

,

Luzyanina

,

T.

, and

Roose

,

D.

, 2002, "

Numerical Bifurcation Analysis of Delay Differential Equations Using DDE-BIFTOOL

,"

ACM Trans. Math. Softw.

0098-3500,

28

(

1

), pp.

1

21

.

16.

Szalai

,

R.

,

Stepan

,

G.

, and

Hogan

,

S. J.

, 2006, "

Continuation of Bifurcations in Periodic Delay-Differential Equations Using Characteristic Matrices

,"

SIAM J. Sci. Comput.

1064-8275,

28

(

4

), pp.

1301

1317

.

17.

Salinger

,

A. G.

,

Burroughs

,

E. A.

,

Pawlowski

,

R. P.

,

Phipps

,

E. T.

, and

Romero

,

L. A.

, 2005, "

Bifurcation Tracking Algorithms and Software for Large Scale Applications

,"

Int. J. Bifurcation Chaos Appl. Sci. Eng.

0218-1274,

15

(

3

), pp.

1015

1032

.

19.

Kuznetsov

,

Y. A.

, 2004,

Elements of Applied Bifurcation Theory

, 3rd ed., Section 10.2.2,

Springer-Verlag

,

New York

.

20.

Higham

,

D. J.

, and

Higham

,

N. J.

, 2005,

MATLAB Guide

, 2nd ed.,

Society for Industrial and Applied Mathematics

,

Philadelphia, PA

, Chap. 5.

21.

Svahn

,

F.

, and

Dankowicz

,

H.

, 2008, "

Energy Transfer in Vibratory Systems With Friction Exhibiting Low-Velocity Collisions

,"

J. Vib. Control

1077-5463,

14

(

1–2

), pp.

255

284

.

22.

Kang

,

W.

,

Thota

,

P.

,

Wilcox

,

B.

, and

Dankowicz

,

H.

, 2009, "

Bifurcation Analysis of a Microactuator Using a New Toolbox for Continuation of Hybrid System Trajectories

,"

ASME J. Comput. Nonlinear Dyn.

1555-1423,

4

(

1

), p.

011009

(8 pp.).

23.

di Bernardo

,

M.

,

Kowalczyk

,

P.

, and

Nordmark

,

A.

, 2002, "

Bifurcations of Dynamical Systems With Sliding: Derivation of Normal-Form Mappings

,"

Physica D

0167-2789,

170

, pp.

175

205

.

24.

Haro

,

A.

, and

de la Llave

,

R.

, 2006, "

A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Rigorous Results

,"

J. Differ. Equations

0022-0396,

228

(

2

), pp.

530

579

.

25.

Haro

,

A.

, and

de la Llave

,

R.

, 2006, "

A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Numerical Algorithms

,"

Discrete Contin. Dyn. Syst., Ser. B

1531-3492,

6

(

6

), pp.

1261

1300

.

26.

Haro

,

A.

, and

de la Llave

,

R.

, 2007, "

A Parametrization Method for the Computation of Invariant Tori and Their Whiskers in Quasi-Periodic Maps: Explorations and Mechanisms for the Breakdown of Hyperbolicity

,"

SIAM J. Appl. Dyn. Syst.

1536-0040,

6

(

1

), pp.

142

207

.

27.

Moore

,

G.

, 2005, "

Floquet Theory as a Computational Tool

,"

SIAM J. Numer. Anal.

0036-1429,

42

(

6

), pp.

2522

2568

.

You do not currently have access to this content.